Infinite Time Computable Model Theory
نویسنده
چکیده
We introduce infinite time computable model theory, the computable model theory arising with infinite time Turing machines, which provide infinitary notions of computability for structures built on the reals R. Much of the finite time theory generalizes to the infinite time context, but several fundamental questions, including the infinite time computable analogue of the Completeness Theorem, turn out to be independent of ZFC.
منابع مشابه
Automata-based presentations of infinite structures
The model theory of finite structures is intimately connected to various fields in computer science, including complexity theory, databases, and verification. In particular, there is a close relationship between complexity classes and the expressive power of logical languages, as witnessed by the fundamental theorems of descriptive complexity theory, such as Fagin’s Theorem and the ImmermanVard...
متن کاملOrdinal Computability
Ordinal computability uses ordinals instead of natural numbers in abstract machines like register or Turing machines. We give an overview of the computational strengths of α-β-machines, where α and β bound the time axis and the space axis of some machine model. The spectrum ranges from classical Turing computability to ∞-∞-computability which corresponds to Gödel’s model of constructible sets. ...
متن کاملThe computable dimension of trees of infinite height
In a finite language, a model A is computable if its domain is a computable subset of ω, and its basic operations and relations are all computable. In computable model theory, algorithmic properties of algebraic systems are treated up to computable isomorphism. The number of distinct (up to computable isomorphism) computable presentations of a model A is called the computable dimension of A. If...
متن کاملChains and antichains in partial orderings
We study the complexity of infinite chains and antichains in computable partial orderings. We show that there is a computable partial ordering which has an infinite chain but none that is Σ1 or Π 1 1, and also obtain the analogous result for antichains. On the other hand, we show that every computable partial ordering which has an infinite chain must have an infinite chain that is the differenc...
متن کاملD ec 2 01 6 RANDOMNESS VIA INFINITE COMPUTATION AND EFFECTIVE DESCRIPTIVE SET THEORY
We study randomness beyond Π11-randomness and its Martin-Löf type variant, introduced in [HN07] and further studied in [BGM]. The class given by the infinite time Turing machines (ITTMs), introduced by Hamkins and Kidder, is strictly between Π11 and Σ 1 2. We prove that the natural randomness notions associated to this class have several desirable properties resembling those of the classical ra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006